Anti-Patterns 1n Infrastructure as Code

Akond Rahman
Department of Computer Science
North Carolina State University

Raleigh, North Carolina
Email: aarahman@ncsu.edu

Abstract—In DevOps, infrastructure as code (IaC) scripts
are used by practitioners to create and manage an automated
deployment pipeline that enables IT organizations to release their
software changes rapidly at scale. Low quality IaC scripts can
have serious consequences, potentially leading to wide-spread
system outages and service discrepancies. The goal of this research
is to help practitioners increase the quality of infrastructure as
code (1aC) scripts by identifying anti-patterns in IaC scripts and
development of IaC scripts. Using open source repositories, we
conduct three initial studies to (i) quantify the frequency and
categorize the defects in IaC scripts; and (ii) identify operations
that characterize defective IaC scripts. Based on our empirical
analysis we observe (i) the dominant defect defect categories to be
related to syntax and configuration assignments, and (ii) three
operations that characterize defective IaC scripts. The above-
mentioned findings motivate us to identify anti-patterns in IaC
scripts and IaC development. To this end, we propose three
studies that identify (i) process anti-patterns; and (ii) security-
related anti-patterns in IaC.

I. INTRODUCTION

Information technology (IT) organizations are increasingly
adopting DevOps practices [1]. DevOps organizations i.e. IT
organizations that adopt DevOps, have strong collaboration
between software development and operations teams to deliver
software rapidly [2]. One technology that these organizations
consider essential to implement DevOps is the use of infras-
tructure as code (IaC) scripts [2] [3]. DevOps organizations use
IaC scripts such as Puppet ! scripts, to automatically manage
their configurations and operations infrastructure [2].

Similar to software source code, IaC scripts can experience
frequent churn, making these scripts susceptible to quality is-
sues such as defects [4]. Defects in IaC scripts can have serious
consequences, as these scripts are associated in setting up and
managing cloud-based infrastructure, and ensuring availability
of software services. For example on January 2017, execution
of a defective IaC script erased home directories of around
270 users in cloud instances maintained by Wikimedia 2. The
above-mentioned evidence demonstrated in real-world, and
research studies motivate us to systematically study quality
issues of IaC scripts in forms of anti-patterns.

Anti-patterns in software engineering correspond to prac-
tices that may have negative consequences [5]. Practitioners
might be inadvertently implementing practices with negative
consequences due to lack of knowledge, lack of experience, or

Uhttps://puppet.com/
Zhttps://wikitech.wikimedia.org/wiki/Incident_documentation/20170118-
Labs

applying a perceived good practice in the wrong context [5].
By identifying anti-patterns we can provide actionable rec-
ommendations to practitioners, and pinpoint characteristics
that correlate with defects and violates security and privacy
objectives.

Thesis Statement: Through systematic investigation, we can
identify anti-patterns in infrastructure as code that (i) correlate
with defects; and (ii) violate security and privacy objectives.

We empirically evaluate our thesis statement by answering
the following research questions:

e RQO-1: How frequently do defects occur in infrastructure
as code (laC) scripts? What categories of defects occur
IaC scripts?

o RQ-2: What text features characterize defective infrastruc-
ture as code scripts?

e RQ-3: What are the process anti-patterns in developing
infrastructure as code scripts?

o RQ-4: What security anti-patterns are exhibited in infras-
tructure as code scripts?

Upon completion of this thesis we expect to make the
following contributions:

o A set of process, and security-related anti-patterns;

o Tool suites that extract process, and security anti-patterns
from IaC scripts;

« Datasets where scripts are labeled as defective, and violating
security-related anti-patterns are identified; and

o Defect prediction models built using process anti-patterns
of IaC scripts

II. RESEARCH
A. Study-1: Defect Categories (Under Review at TSE’18)

Motivation: Categorization of defects for a software sys-
tem helps in formulating effective mitigation strategies, and
prioritize testing efforts [6]. Researchers [7] have previously
used classification schemes, such as the defect type attribute of
orthogonal defect classification (ODC) [6], to classify defects
for non-IaC software systems written in GPLs. By character-
izing defects in [aC we can understand how frequently defects
occur, and what categories of defects occur in IaC scripts.

Methodology: We use the defect type attribute of ODC to
categorize defects. We select the ODC defect type attribute as

this technique uses semantic information to provide informed
decisions on the defect categories [6]. According to the ODC
defect type attribute, a defect can belong to eight categories.
As an XCM might not correspond to a defect, we added a ‘no
defect’ category. Furthermore, a XCM might not to belong to
any of the eight categories that belong to the ODC defect
type attribute. Hence, we introduced the ‘other’ category.
Altogether we considered 10 categories, and classified the
XCMs into one of these 10 categories. We constructed three
datasets: ‘Mozilla’, ‘Openstack’, and ‘Wikimedia’.

Results: Respectively, for Mozilla, Openstack, and Wikime-
dia, we observe (i) 42.8%, 66.8%, and 50.3% of the defective
IaC scripts to contain defects that belong to category assign-
ment; and (ii) assignment-related defects are more prevalent
amongst IaC systems compared to previously studied non-IaC
systems.

B. Study-2: Characteristics of Defective Scripts (Accepted at
ICST’18)

Motivation: In prior work, researchers have used text fea-
tures to characterize defective software source files written
in GPLs, such as Java [8]. IaC scripts use domain specific
languages (DSLs) [9]. The syntax and semantics of DSLs are
fundamentally different from GPLs [10], and through system-
atic investigation we can determine if text-based features can
be used effectively for characterizing and predicting defective
IaC scripts.

Methodology: We characterize defective IaC scripts by
extracting text features. We use two text mining techniques to
extract text features: the ‘bag-of-words (BOW)’ technique [11]
and the ‘term frequency-inverse document frequency (TF-
IDF)’ technique [12]. We apply the Strauss-Corbin Grounded
Theory (SGT) [?] on text features that correlate with defective
TaC scripts to characterize properties of defective IaC scripts.
We construct defect prediction models using the text features
and Random Forest (RF) [13].

Results: We identify three properties that characterize de-
fective IaC scripts: filesystem operations, infrastructure provi-
sioning, and managing user accounts. Using the bag-of-word
technique, we observe a median F-Measure of 0.74, 0.71,
and 0.73, respectively, for Mozilla, Openstack, and Wikimedia
Commons. Using the TF-IDF technique, we observe a median
F-Measure of 0.72, 0.74, and 0.70, respectively, for Mozilla,
Openstack, and Wikimedia Commons.

C. Study-3: Process Characteristics (In Progress)

Motivation: Prior research has shown that software source
code written in GPLs is correlated with process metrics. We
hypothesize that a certain set of characteristics related to the
IaC development process are correlated with defects, and can
be used to predict defective scripts.

Methodology: We hypothesize the following characteristics
to be correlated with defective IaC scripts: commits, age,
number of developers who modified the script, lines changed
per commit, and number of developers who multitask. We also
used these characteristics to build prediction models.

D. Study-4: Characteristics that Violate Security Objectives
(Proposed)

Motivation: As IaC scripts hold crucial information about
the deployment environment, violation of security objectives
can be disastrous. We refer to characteristics of 1aC scripts that
violate security objectives as security-related anti-patterns. As
an example anti-pattern, if administrator credentials are hard-
coded in IaC scripts, attackers can use those credentials and
hack into the deployment infrastructure.

Methodology: As the first step to extract the security-related
anti-patterns, we will apply grounded theory analysis [14].
Next, we will create an automated tool that will identify the
security-related anti-patterns in [aC scripts. We plan to add
custom heuristics derived from our qualitative analysis, and
extend existing commercial tools such as, puppet-lint 3.

REFERENCES

[1] N. E A. Brown, J. Humble, N. Kersten, and G. Kim, “2016 State
of DevOps Report,” https://puppet.com/resources/whitepaper/2016-state-
of-devops-report, 2017, [Online; accessed 15-August-2017].

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[3] D. Spinellis, “Don’t install software by hand,” IEEE Software, vol. 29,
no. 4, pp. 86-87, July 2012.

[4] Y. Jiang and B. Adams, “Co-evolution of infrastructure and
source code: An empirical study,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 45-55. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820518.2820527

[5] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
Ist ed. New York, NY, USA: John Wiley & Sons, Inc., 1998.

[6] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M. Y. Wong, “Orthogonal defect classification-a
concept for in-process measurements,” I[EEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, Nov 1992.

[71 A. Pecchia and S. Russo, “Detection of software failures through
event logs: An experimental study,” in 2012 IEEE 23rd International
Symposium on Software Reliability Engineering, Nov 2012, pp. 31-40.

[8] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993—-1006, Oct 2014.

[91 R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A
configuration verification tool for puppet,” SIGPLAN Not.,
vol. 51, no. 6, pp. 416430, Jun. 2016. [Online]. Available:

http://doi.acm.org/10.1145/2980983.2908083

E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger, “Attribute
grammar-based language extensions for java,” in Proceedings of the
21st European Conference on Object-Oriented Programming, ser.
ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 575-599.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2394758.2394796
[11] Z. S. Harris, “Distributional structure,” WORD, vol. 10, no. 2-3, pp.
146-162, 1954.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,

(10]

[12]

2008.
[13] L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1 5-32, 2001. [Online]. Available:

http://dx.doi.org/10.1023/A:1010933404324
K. Charmaz, Constructing grounded theory.
Publishing, 2014.

[14] London, UK: Sage

3http://puppet-lint.com/

